Interface CommutativeMonoid<E>
- Type Parameters:
E- Element type.
- All Superinterfaces:
Set<E>
- All Known Subinterfaces:
AdditiveGroup<E>,EuclideanDomain<E>,Field<E>,InnerProductSpace<V,,S, F> Module<V,,S, R> NormedVectorSpace<V,,S, F> Ring<E>,SemiRing<E>,VectorSpace<V,S, F>
- All Known Implementing Classes:
AbstractModule,AbstractVectorSpace,AlgebraicFieldExtension,BigElements,BigFiniteField,BigIntegers,BigIntegersModuloN,BigPrimeField,BigRationals,ComplexCoordinateSpace,ComplexNumbers,ConstructiveReals,Curve25519,EdwardsCurve,FieldOfFractions,FiniteField,GaussianRationals,Integers,IntegersModuloN,MatrixRing,MontgomeryCurve,MultivariatePolynomialRing,MultivariatePolynomialRingOverRing,NullSafeRing,PerformanceLoggingField,PerformanceLoggingRing,PolynomialRing,PolynomialRingFFT,PolynomialRingKaratsuba,PolynomialRingOverRing,PrimeField,QuadraticField,QuotientRing,Rationals,RealCoordinateSpace,RealNumbers,ShortWeierstrassCurveAffine,ShortWeierstrassCurveProjective,TestUtils.TestBigIntegers,TestUtils.TestField,TestUtils.TestIntegers,VectorGroup,VectorSpaceOverField
A commutative monoid is a set with an associative and commutative addition operation.
-
Method Summary
-
Method Details
-
add
Return the result of a+b. -
add
Return the result of a+b+c. -
add
Return the result of a+b+c+d. -
zero
E zero()Return the zero element.
-