Interface SemiRing<E>
- Type Parameters:
E- Element type.
- All Superinterfaces:
CommutativeMonoid<E>,Monoid<E>,Semigroup<E>,Set<E>
- All Known Subinterfaces:
EuclideanDomain<E>,Field<E>,Ring<E>
- All Known Implementing Classes:
AlgebraicFieldExtension,BigElements,BigFiniteField,BigIntegers,BigIntegersModuloN,BigPrimeField,BigRationals,ComplexNumbers,ConstructiveReals,FieldOfFractions,FiniteField,GaussianRationals,Integers,IntegersModuloN,MatrixRing,MultivariatePolynomialRing,MultivariatePolynomialRingOverRing,NullSafeRing,PerformanceLoggingField,PerformanceLoggingRing,PolynomialRing,PolynomialRingFFT,PolynomialRingKaratsuba,PolynomialRingOverRing,PrimeField,QuadraticField,QuotientRing,Rationals,RealNumbers,TestUtils.TestBigIntegers,TestUtils.TestField,TestUtils.TestIntegers
A semiring is a set with an associative and commutative addition operation and an associative
multiplication operation. It is not required that each element has an additive inverse.
-
Method Summary
Methods inherited from interface dk.jonaslindstrom.ruffini.common.abstractions.CommutativeMonoid
add, add, add, zeroMethods inherited from interface dk.jonaslindstrom.ruffini.common.abstractions.Monoid
identity, isIdentity, power
-
Method Details
-
integer
Return the element in this ring equal to 1 + ⋯ + 1 where 1 is added to it self a times. If this is a ring, a are allowed to be negative, in which case it is equal to the additive inverse of 1 is added to it self -a times -
multiply
Return the element in this ring equal to ab. -
multiply
Return the element in this ring equal to abc.
-