Uses of Interface
dk.jonaslindstrom.ruffini.common.abstractions.CommutativeMonoid
Packages that use CommutativeMonoid
Package
Description
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.common.abstractionsSubinterfaces of CommutativeMonoid in dk.jonaslindstrom.ruffini.common.abstractionsModifier and TypeInterfaceDescriptioninterfaceAn additive group is like aGroupbut where the operation is commutative and is calledadd.interfaceA Euclidean domain is a ring with Euclidean division.interfaceField<E>A field is a commutative ring where every non-zero element has a multiplicative inverse.interfaceInnerProductSpace<V,S, F extends Field<S>> A group is a set with an associative addition operation and an inverse operation.interfaceA module over a ring R is an additive group V together with a scalar multiplication.interfaceNormedVectorSpace<V,S, F extends Field<S>> An inner product space is a vector space with an inner product.interfaceRing<E>A ring is a set with an associative and commutative addition operation and an associative multiplication operation.interfaceSemiRing<E>A semiring is a set with an associative and commutative addition operation and an associative multiplication operation.interfaceVectorSpace<V,S, F extends Field<S>> A vector space is a module over a field.
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.common.helpersClasses in dk.jonaslindstrom.ruffini.common.helpers that implement CommutativeMonoidModifier and TypeClassDescriptionclassNullSafeRing<E>This class wraps a ring but operations will treat null operands as if they were zero.classWrapper for the ring class which logs the number of operations performed in this ring.classWrapper for the ring class which logs the number of operations performed in this ring.
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.common.matrices.structuresClasses in dk.jonaslindstrom.ruffini.common.matrices.structures that implement CommutativeMonoidModifier and TypeClassDescriptionclassMatrixRing<E>This class represents a ring of n × n matrices over a base ring.
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.common.structuresClasses in dk.jonaslindstrom.ruffini.common.structures that implement CommutativeMonoidModifier and TypeClassDescriptionclassAbstractModule<V,S, R extends Ring<S>> classAbstractVectorSpace<V,S, F extends Field<S>> classclassQuotientRing<E>classVectorGroup<E>classVectorSpaceOverField<E,F extends Field<E>> 
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.common.utilClasses in dk.jonaslindstrom.ruffini.common.util that implement CommutativeMonoidModifier and TypeClassDescriptionstatic classstatic classstatic class
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.elliptic.structuresClasses in dk.jonaslindstrom.ruffini.elliptic.structures that implement CommutativeMonoidModifier and TypeClassDescriptionclassclassEdwardsCurve<E,F extends Field<E>> Instances of this class represents a curve over a field over elements of typeEsatisfying the equation x2 + y2 = 1 + d x2 y2.classMontgomeryCurve<E,F extends Field<E>> Curve on Montgomery form By2 = x3 + Ax2 + x.classShortWeierstrassCurveAffine<E,F extends Field<E>> class
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.finitefieldsClasses in dk.jonaslindstrom.ruffini.finitefields that implement CommutativeMonoidModifier and TypeClassDescriptionclassAlgebraicFieldExtension<E,F extends Field<E>> classclassclassclassclassclass
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.integers.structuresClasses in dk.jonaslindstrom.ruffini.integers.structures that implement CommutativeMonoidModifier and TypeClassDescriptionclassclassThis class is an implementation of ℤ / nℤ, e.g.classclassclassThis class is an implementation of ℤ / nℤ, e.g.class
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.integers.structures.limbsClasses in dk.jonaslindstrom.ruffini.integers.structures.limbs that implement CommutativeMonoid
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.polynomials.structuresClasses in dk.jonaslindstrom.ruffini.polynomials.structures that implement CommutativeMonoidModifier and TypeClassDescriptionclassThis class implements the ring of polynomials K[x] over a field K.classThis class implements the ring of polynomials K[x] over a field K.classThis class implements the ring of polynomials K[x] over a field K.classThis class implements the ring of polynomials K[x] over a field K.classThis class implements the ring of polynomials K[x] over a field K.class
- 
Uses of CommutativeMonoid in dk.jonaslindstrom.ruffini.reals.structuresClasses in dk.jonaslindstrom.ruffini.reals.structures that implement CommutativeMonoidModifier and TypeClassDescriptionclassclassclassThe real numbers represented as constructive reals, e.g.classclassReal numbers represented byDoubles.