Interface AdditiveGroup<E>
- Type Parameters:
E- Element type.
- All Superinterfaces:
CommutativeMonoid<E>,Set<E>
- All Known Subinterfaces:
EuclideanDomain<E>,Field<E>,InnerProductSpace<V,,S, F> Module<V,,S, R> NormedVectorSpace<V,,S, F> Ring<E>,VectorSpace<V,S, F>
- All Known Implementing Classes:
AbstractModule,AbstractVectorSpace,AlgebraicFieldExtension,BigElements,BigFiniteField,BigIntegers,BigIntegersModuloN,BigPrimeField,BigRationals,ComplexCoordinateSpace,ComplexNumbers,ConstructiveReals,Curve25519,EdwardsCurve,FieldOfFractions,FiniteField,GaussianRationals,Integers,IntegersModuloN,MatrixRing,MontgomeryCurve,MultivariatePolynomialRing,MultivariatePolynomialRingOverRing,NullSafeRing,PerformanceLoggingField,PerformanceLoggingRing,PolynomialRing,PolynomialRingFFT,PolynomialRingKaratsuba,PolynomialRingOverRing,PrimeField,QuadraticField,QuotientRing,Rationals,RealCoordinateSpace,RealNumbers,ShortWeierstrassCurveAffine,ShortWeierstrassCurveProjective,TestUtils.TestBigIntegers,TestUtils.TestField,TestUtils.TestIntegers,VectorGroup,VectorSpaceOverField
An additive group is like a
Group but where the operation is commutative and is called add.-
Method Summary
Methods inherited from interface dk.jonaslindstrom.ruffini.common.abstractions.CommutativeMonoid
add, add, add, zero
-
Method Details
-
negate
Return -a. -
subtract
Compute a-b. -
isZero
-
scale
Return e added to it self n times in this monoid -
scale
Return e added to it self n times in this monoid -
doubling
Return 2e. The default implementation returns e + e but some implementations may override this with faster implementations. -
sum
Returns the sum of a list of elements.
-