Interface Ring<E>
- Type Parameters:
E- Element type.
- All Superinterfaces:
AdditiveGroup<E>,CommutativeMonoid<E>,Monoid<E>,Semigroup<E>,SemiRing<E>,Set<E>
- All Known Subinterfaces:
EuclideanDomain<E>,Field<E>
- All Known Implementing Classes:
AlgebraicFieldExtension,BigElements,BigFiniteField,BigIntegers,BigIntegersModuloN,BigPrimeField,BigRationals,ComplexNumbers,ConstructiveReals,FieldOfFractions,FiniteField,GaussianRationals,Integers,IntegersModuloN,MatrixRing,MultivariatePolynomialRing,MultivariatePolynomialRingOverRing,NullSafeRing,PerformanceLoggingField,PerformanceLoggingRing,PolynomialRing,PolynomialRingFFT,PolynomialRingKaratsuba,PolynomialRingOverRing,PrimeField,QuadraticField,QuotientRing,Rationals,RealNumbers,TestUtils.TestBigIntegers,TestUtils.TestField,TestUtils.TestIntegers
A ring is a set with an associative and commutative addition operation and an associative
multiplication operation.
-
Method Summary
Methods inherited from interface dk.jonaslindstrom.ruffini.common.abstractions.AdditiveGroup
doubling, isZero, negate, scale, scale, subtract, sumMethods inherited from interface dk.jonaslindstrom.ruffini.common.abstractions.CommutativeMonoid
add, add, add, zeroMethods inherited from interface dk.jonaslindstrom.ruffini.common.abstractions.Monoid
identity, isIdentity, powerMethods inherited from interface dk.jonaslindstrom.ruffini.common.abstractions.Semigroup
multiply, multiply, multiply