Uses of Class
dk.jonaslindstrom.ruffini.polynomials.elements.Polynomial
Packages that use Polynomial
Package
Description
-
Uses of Polynomial in dk.jonaslindstrom.ruffini.elliptic.structures.bls12381
Fields in dk.jonaslindstrom.ruffini.elliptic.structures.bls12381 with type parameters of type PolynomialModifier and TypeFieldDescriptionstatic AlgebraicFieldExtension<Polynomial<Polynomial<BigInteger>>,AlgebraicFieldExtension<Polynomial<BigInteger>, AlgebraicFieldExtension<BigInteger, BigPrimeField>>> BLS12381.FP12FP12= FP6(w) / (w2 - v)) is a quadratic field extension ofFP6.static AlgebraicFieldExtension<Polynomial<Polynomial<BigInteger>>,AlgebraicFieldExtension<Polynomial<BigInteger>, AlgebraicFieldExtension<BigInteger, BigPrimeField>>> BLS12381.FP12FP12= FP6(w) / (w2 - v)) is a quadratic field extension ofFP6.static AlgebraicFieldExtension<Polynomial<Polynomial<BigInteger>>,AlgebraicFieldExtension<Polynomial<BigInteger>, AlgebraicFieldExtension<BigInteger, BigPrimeField>>> BLS12381.FP12FP12= FP6(w) / (w2 - v)) is a quadratic field extension ofFP6.static AlgebraicFieldExtension<Polynomial<BigInteger>,AlgebraicFieldExtension<BigInteger, BigPrimeField>> BLS12381.FP6FP6= FP2(v) / (v3 - (u + 1)) is a cubic field extension ofFP2.static ShortWeierstrassCurveAffine<Polynomial<BigInteger>,?> BLS12381.G2Curve overFP2containing the G2 subgroup.static AffinePoint<Polynomial<BigInteger>>BLS12381.G2_GENERATORstatic Group<Polynomial<Polynomial<Polynomial<BigInteger>>>>BLS12381.GTstatic Group<Polynomial<Polynomial<Polynomial<BigInteger>>>>BLS12381.GTstatic Group<Polynomial<Polynomial<Polynomial<BigInteger>>>>BLS12381.GTstatic java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BLS12381.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.static java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BLS12381.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.static java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BLS12381.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.static java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BLS12381.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.Methods in dk.jonaslindstrom.ruffini.elliptic.structures.bls12381 that return types with arguments of type PolynomialModifier and TypeMethodDescriptionstatic AffinePoint<Polynomial<BigInteger>>Serialization.deserializeG2(byte[] bytes) static SamePair<Polynomial<Polynomial<Polynomial<BigInteger>>>>BLS12381.twist(AffinePoint<BigInteger> p) static SamePair<Polynomial<Polynomial<Polynomial<BigInteger>>>>BLS12381.twist(AffinePoint<BigInteger> p) static SamePair<Polynomial<Polynomial<Polynomial<BigInteger>>>>BLS12381.twist(AffinePoint<BigInteger> p) Method parameters in dk.jonaslindstrom.ruffini.elliptic.structures.bls12381 with type arguments of type PolynomialModifier and TypeMethodDescriptionstatic byte[]Serialization.serializeG2(AffinePoint<Polynomial<BigInteger>> point, boolean compressed) -
Uses of Polynomial in dk.jonaslindstrom.ruffini.elliptic.structures.bn254
Fields in dk.jonaslindstrom.ruffini.elliptic.structures.bn254 with type parameters of type PolynomialModifier and TypeFieldDescriptionstatic AlgebraicFieldExtension<Polynomial<Polynomial<BigInteger>>,AlgebraicFieldExtension<Polynomial<BigInteger>, AlgebraicFieldExtension<BigInteger, BigPrimeField>>> BN254.FP12FP12= FP6(w) / (w2 - v)) is a quadratic field extension ofFP6.static AlgebraicFieldExtension<Polynomial<Polynomial<BigInteger>>,AlgebraicFieldExtension<Polynomial<BigInteger>, AlgebraicFieldExtension<BigInteger, BigPrimeField>>> BN254.FP12FP12= FP6(w) / (w2 - v)) is a quadratic field extension ofFP6.static AlgebraicFieldExtension<Polynomial<Polynomial<BigInteger>>,AlgebraicFieldExtension<Polynomial<BigInteger>, AlgebraicFieldExtension<BigInteger, BigPrimeField>>> BN254.FP12FP12= FP6(w) / (w2 - v)) is a quadratic field extension ofFP6.static AlgebraicFieldExtension<Polynomial<BigInteger>,AlgebraicFieldExtension<BigInteger, BigPrimeField>> BN254.FP6FP6= FP2(v) / (v3 - (u + 9)) is a cubic field extension ofFP2.static ShortWeierstrassCurveAffine<Polynomial<BigInteger>,?> BN254.G2Curve overFP2containing the G2 subgroup.static AffinePoint<Polynomial<BigInteger>>BN254.G2_GENERATORstatic Group<Polynomial<Polynomial<Polynomial<BigInteger>>>>BN254.GTstatic Group<Polynomial<Polynomial<Polynomial<BigInteger>>>>BN254.GTstatic Group<Polynomial<Polynomial<Polynomial<BigInteger>>>>BN254.GTstatic java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BN254.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.static java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BN254.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.static java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BN254.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.static java.util.function.BiFunction<AffinePoint<BigInteger>,AffinePoint<Polynomial<BigInteger>>, Polynomial<Polynomial<Polynomial<BigInteger>>>> BN254.PAIRINGThe optimal Ate pairing which is a bilinear function e: G1 x G2 → GT.Methods in dk.jonaslindstrom.ruffini.elliptic.structures.bn254 that return types with arguments of type PolynomialModifier and TypeMethodDescriptionstatic SamePair<Polynomial<Polynomial<Polynomial<BigInteger>>>>BN254.twist(AffinePoint<BigInteger> p) static SamePair<Polynomial<Polynomial<Polynomial<BigInteger>>>>BN254.twist(AffinePoint<BigInteger> p) static SamePair<Polynomial<Polynomial<Polynomial<BigInteger>>>>BN254.twist(AffinePoint<BigInteger> p) -
Uses of Polynomial in dk.jonaslindstrom.ruffini.finitefields
Methods in dk.jonaslindstrom.ruffini.finitefields that return PolynomialModifier and TypeMethodDescriptionFiniteField.createElement(Integer... c) AlgebraicFieldExtension.invert(Polynomial<E> a) BigFiniteField.invert(Polynomial<BigInteger> a) FiniteField.invert(Polynomial<Integer> a) Methods in dk.jonaslindstrom.ruffini.finitefields with parameters of type PolynomialModifier and TypeMethodDescriptionAlgebraicFieldExtension.invert(Polynomial<E> a) BigFiniteField.invert(Polynomial<BigInteger> a) FiniteField.invert(Polynomial<Integer> a) AlgebraicFieldExtension.toString(Polynomial<E> p) Constructors in dk.jonaslindstrom.ruffini.finitefields with parameters of type PolynomialModifierConstructorDescriptionAlgebraicFieldExtension(F field, String element, Polynomial<E> minimalPolynomial) BigFiniteField(BigPrimeField baseField, Polynomial<BigInteger> mod) Create a finite field as a field of prime order module an irreducible polynomial.FiniteField(PrimeField baseField, Polynomial<Integer> mod) Create a finite field as a field of prime order module an irreducible polynomial. -
Uses of Polynomial in dk.jonaslindstrom.ruffini.finitefields.algorithms
Methods in dk.jonaslindstrom.ruffini.finitefields.algorithms that return PolynomialMethods in dk.jonaslindstrom.ruffini.finitefields.algorithms with parameters of type PolynomialModifier and TypeMethodDescriptionBerlekampRabinAlgorithm.apply(Polynomial<Integer> f) TonelliShanks.apply(Polynomial<Integer> a) -
Uses of Polynomial in dk.jonaslindstrom.ruffini.integers
Methods in dk.jonaslindstrom.ruffini.integers that return PolynomialModifier and TypeMethodDescriptionstatic Polynomial<Integer>static Polynomial<Integer>static Polynomial<Integer> -
Uses of Polynomial in dk.jonaslindstrom.ruffini.polynomials.algorithms
Methods in dk.jonaslindstrom.ruffini.polynomials.algorithms that return PolynomialModifier and TypeMethodDescriptionInversion.apply(Polynomial<E> f, Integer l) KaratsubaAlgorithm.apply(Polynomial<E> a, Polynomial<E> b) Methods in dk.jonaslindstrom.ruffini.polynomials.algorithms that return types with arguments of type PolynomialModifier and TypeMethodDescriptionPair<Polynomial<E>,Polynomial<E>> FastDivision.apply(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> FastDivision.apply(Polynomial<E> a, Polynomial<E> b) Methods in dk.jonaslindstrom.ruffini.polynomials.algorithms with parameters of type PolynomialModifier and TypeMethodDescriptionBatchPolynomialEvaluation.apply(Polynomial<E> polynomial) Pair<Polynomial<E>,Polynomial<E>> FastDivision.apply(Polynomial<E> a, Polynomial<E> b) Inversion.apply(Polynomial<E> f, Integer l) KaratsubaAlgorithm.apply(Polynomial<E> a, Polynomial<E> b) BinaryTree.SubproductTree.evaluate(Polynomial<E> polynomial) Evaluate from the root. -
Uses of Polynomial in dk.jonaslindstrom.ruffini.polynomials.elements
Methods in dk.jonaslindstrom.ruffini.polynomials.elements that return PolynomialModifier and TypeMethodDescriptionPolynomial.Builder.build()static <T> Polynomial<T>Polynomial.constant(T constant) Polynomial.differentiate(Ring<E> ring) <X> Polynomial<X>Polynomial.mapCoefficients(java.util.function.Function<E, X> converter) static <T> Polynomial<T>Polynomial.monomial(T coefficient, int degree) static <T> Polynomial<T>Polynomial.of(T... coefficients) Construct a new polynomial with the given coefficients.Polynomial.removeTerms(java.util.function.Predicate<E> predicate) Polynomial.reverse()Constructors in dk.jonaslindstrom.ruffini.polynomials.elements with parameters of type Polynomial -
Uses of Polynomial in dk.jonaslindstrom.ruffini.polynomials.structures
Methods in dk.jonaslindstrom.ruffini.polynomials.structures that return PolynomialModifier and TypeMethodDescriptionPolynomialRingOverRing.add(Polynomial<E> a, Polynomial<E> b) final Polynomial<E>PolynomialRingOverRing.identity()PolynomialRingKaratsuba.multiply(Polynomial<E> a, Polynomial<E> b) PolynomialRingOverRing.multiply(Polynomial<E> a, Polynomial<E> b) PolynomialRingOverRing.multiply(E a, Polynomial<E> b) PolynomialRingOverRing.negate(Polynomial<E> a) PolynomialRingFFT.toPolynomial(PolynomialRingFFT<E>.TransformedPolynomial a) PolynomialRingFFT.TransformedPolynomial.toPolynomial()PolynomialRingOverRing.zero()Methods in dk.jonaslindstrom.ruffini.polynomials.structures that return types with arguments of type PolynomialModifier and TypeMethodDescriptionPair<Polynomial<E>,Polynomial<E>> PolynomialRing.divide(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> PolynomialRing.divide(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> PolynomialRingKaratsuba.divide(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> PolynomialRingKaratsuba.divide(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> PolynomialRingOverRing.divisionWithRemainder(Polynomial<E> a, Polynomial<E> b) Perform polynomial division, eg.Pair<Polynomial<E>,Polynomial<E>> PolynomialRingOverRing.divisionWithRemainder(Polynomial<E> a, Polynomial<E> b) Perform polynomial division, eg.Pair<Polynomial<E>,Polynomial<E>> PolynomialRingOverRing.divisionWithRemainder(Polynomial<E> a, Polynomial<E> b, E bLeadInverse) Perform polynomial division, eg.Pair<Polynomial<E>,Polynomial<E>> PolynomialRingOverRing.divisionWithRemainder(Polynomial<E> a, Polynomial<E> b, E bLeadInverse) Perform polynomial division, eg.Methods in dk.jonaslindstrom.ruffini.polynomials.structures with parameters of type PolynomialModifier and TypeMethodDescriptionPolynomialRingOverRing.add(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> PolynomialRing.divide(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> PolynomialRingKaratsuba.divide(Polynomial<E> a, Polynomial<E> b) Pair<Polynomial<E>,Polynomial<E>> PolynomialRingOverRing.divisionWithRemainder(Polynomial<E> a, Polynomial<E> b) Perform polynomial division, eg.Pair<Polynomial<E>,Polynomial<E>> PolynomialRingOverRing.divisionWithRemainder(Polynomial<E> a, Polynomial<E> b, E bLeadInverse) Perform polynomial division, eg.booleanPolynomialRingOverRing.equals(Polynomial<E> a, Polynomial<E> b) PolynomialRingFFT.fromPolynomial(Polynomial<E> a) PolynomialRingKaratsuba.multiply(Polynomial<E> a, Polynomial<E> b) PolynomialRingOverRing.multiply(Polynomial<E> a, Polynomial<E> b) PolynomialRingOverRing.multiply(E a, Polynomial<E> b) PolynomialRingOverRing.negate(Polynomial<E> a) PolynomialRing.norm(Polynomial<E> a) PolynomialRingOverRing.toString(Polynomial<E> a) Constructors in dk.jonaslindstrom.ruffini.polynomials.structures with parameters of type Polynomial